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Composite pulses for ultrabroad-band and ultranarrow-band excitation
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We introduce ultrabroad-band composite pulses (CPs), which maximize (at the expense of a finite error
tolerance ε) the pulse area range wherein the population inversion remains above 1 − ε. We present such CPs for
error thresholds ε = 0.01, 0.001, and 0.0001 in two versions: CPs with different pulse areas of the constituent
pulses, used as control parameters, and with equal pulse areas. The former CPs naturally outperform the CPs of
identical pulses, which in turn outperform conventional broad-band CPs obtained by annulling the population
inversion derivatives at a single point. Moreover, we derive double-compensation CPs, which correct errors in
both the pulse area and the detuning. They outperform the corresponding conventional CPs as well. By using the
same error-tolerance approach, we construct ultranarrow-band CPs, which squeeze the population inversion in
as narrow a range as possible while keeping the excitation outside this range below the error threshold ε.
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I. INTRODUCTION

The technique of composite pulses (CPs) is a powerful tool
for quantum control and modular design of interactions. It
has been widely used in nuclear magnetic resonance [1–4] and
more recently in quantum optics [5–10] and quantum informa-
tion [11–13]. The main advantage of CPs over other control
techniques is that they combine high control accuracy with
robustness to variations in one or more experimental parame-
ters. A CP is a sequence of pulses with suitably chosen relative
phases. These phases are used as control parameters to correct
the errors that emerge in the interaction between a single pulse
and a qubit or to shape up the excitation profile in a desired
manner. Usually this is done by cancellation of propagator
elements and their derivatives versus a particular parameter
at a specific value of this parameter. In such a way one
can produce a huge variety of broad-band (BB) [7,8,14–16],
narrow-band (NB) [14,16–19], and passband [16,20,21] CPs.
Moreover, in so doing one obtains CPs that produce extremely
high accuracy (e.g., error below 10−10) around the chosen
parameter value. However, such extreme accuracy is barely
needed, even in quantum information, wherein the usual
error target is 10−4. In more conventional applications, even
accuracy of 99% usually suffices. The extreme accuracy of
such CPs is therefore unnecessary and moreover it is costly, for
it restricts the bandwidth of the profile. We note here that most
of the results in the CP literature focus on two-state systems
and only limited research has been focused on multilevel
systems [6,22].

Here we present a different approach for construction of
CPs, which trades accuracy for bandwidth. The method uses
numerical optimization of the transition probability, with the
objective to create as broad an excitation profile as possible
for ultrabroad-band (UBB) CPs [or as narrow as possible for
ultranarrow-band (UNB) CPs], at the expense of a higher error
tolerance. In addition to the increased (for BB) or reduced (for
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NB) bandwidth, this method allows us to reduce the total pulse
area and in such a way to create robust CPs of fairly small pulse
area. As benchmarks for comparison we use the BB and NB
CPs derived recently [7,19] because their phases are given by
analytic formulas for any number of pulses and particularly
because they have been shown to perform equally well or
outperform the previous CPs with the same number of pulses.
We extend this approach to double compensation of the pulse
area and detuning errors wherein we use as a benchmark the
universal CPs [10], which allow for compensation of errors in
multiple interaction parameters.

The paper is organized as follows. In Sec. II we start with
a brief overview of the theory of CPs. Then, in Sec. III we
explain how we can boost the bandwidth of the standard
CPs by introducing a finite error. We calculate the composite
phases for several particular examples and compare the results
with those for the standard CPs. Ultranarrow-band CPs are
presented in Sec. IV. Finally, in Sec. V we summarize the
results.

II. STANDARD COMPOSITE PULSES

To explain the idea of CPs, let us consider a two-state quan-
tum system (a qubit), in a general state |�〉 = c1|ψ1〉 + c2|ψ2〉,
interacting with an external coherent field. The evolution of the
qubit is described by the Schrödinger equation

i�∂tc(t) = H(t)c(t), (1)

where c(t) = [c1(t),c2(t)]T is a column vector with the
probability amplitudes of the two states |ψ1〉 and |ψ2〉. The
Hamiltonian after the rotating-wave approximation [23] is

H(t) = (�/2)�(t)e−iD(t)|ψ1〉〈ψ2| + H.c., (2)

with D = ∫ t

0 �(t ′)dt ′, where � = ω0 − ω is the detuning
between the field frequency ω and the Bohr transition
frequency ω0. The Rabi frequency �(t) is a measure of
the field-system interaction: For laser-driven electric dipole
atomic transitions �(t) = −d · E(t)/�, where E(t) is the laser
electric-field envelope and d is the transition dipole moment
of the atom. It is convenient to describe the evolution of the
quantum system by means of the propagator U(t,ti), which
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connects the probability amplitudes at any given time t to
their initial values at time ti : c(t) = U(t,ti)c(ti). For the sake
of simplicity, hereafter we drop the temporal arguments in U.
Because the 2 × 2 propagator is unitary it can be parametrized
by two complex Cayley-Klein parameters a and b as

U =
[

a b

−b∗ a∗

]
. (3)

A constant phase shift φ in the driving field �(t) → �(t)eiφ

is mapped onto the propagator as

U(φ) =
[

a beiφ

−b∗e−iφ a∗

]
. (4)

We assume resonant excitation (� = 0) hereafter; for a
resonant pulse of pulse area A we have a = cos(A/2) and
b = −i sin(A/2). A sequence of N identical pulses, each with
a different phase φk , produces a CP whose effect upon the
quantum system is described by the propagator

U(N) = U(φN ) · · · U(φ2)U(φ1). (5)

When the system is initially in state |1〉, the transition prob-
ability is P = |U (N)

21 |2 and the probability for no transition is
Q = 1 − P = |U (N)

11 |2. Complete population inversion means
P = 1 and hence Q = 0.

If the phases φk are chosen appropriately one can modify
the excitation profile essentially in any desired manner. In
particular, one can nullify the first few terms in the Taylor
expansion of the propagator against a certain parameter at
a specific value. Thereby the total propagator can be made
much more robust to variations in this parameter than the
single-pulse propagator U. Composite pulses can be made
robust to variations in essentially any desired experimental
parameter as well as in several parameters simultaneously.

The CPs derived by cancellation of Taylor coefficients (i.e.,
probability derivatives) at the selected parameter value produce
excitation profiles of extremely high accuracy, which may not
be necessary in some applications. In the following sections
we show that if a higher error (ε < 10−n, with n = 2,3,4) is
tolerated, one can obtain CPs with even higher robustness of
the profiles, i.e., with broader intervals of parameter values
wherein the error remains below the selected value. We refer
to these CPs as UBB and UNB pulses.

III. ULTRABROAD-BAND COMPOSITE PULSES

A. Nonidentical pulses

1. Numerical method

We begin by outlining the method that we use to derive the
UBB CPs for complete population inversion. The condition
for identical pulses in the composite sequence is convenient
in some implementations, but it is not mandatory in general.
Here we present composite sequences of pulses of different
areas A1,A2, . . . ,AN , which are more efficient than sequences
of identical pulses. We denote such sequences by (acting from
left to right)

(A1)φ1 (A2)φ2 · · · (AN )φN
(6)

and the overall propagator reads

U(N) = U(AN,φN ) · · · U(A2,φ2)U(A1,φ1), (7)

where on exact resonance the single-pulse propagator is

U(A,φ) =
[

cos(A/2) −ieiφ sin(A/2)
−ie−iφ sin(A/2) cos(A/2)

]
. (8)

The transition probability generated by the CP reads P =
|U (N)

12 |2 and the no-transition probability is Q = 1 − P =
|U (N)

11 |2. We assume that all areas deviate simultaneously,

Ak = akα, (9)

where α is the deviation factor and ak are fixed numbers
that determine the relative pulse areas and vary for each CP;
these numbers are derived numerically. The objective is, by
varying the numbers ak and the phases φk (k = 1,2, . . . ,N ),
to maximize the range of pulse areas (i.e., the range of values
of the parameter α) wherein the transition probability remains
above the value 1 − ε, i.e., the no-transition probability stays
below ε: Q < ε, where ε is the selected error tolerance level.

We proceed as follows. For a given number of pulses N ,
we calculate (using Mathematica) the no-transition probability
Q = |U (N)

11 |2 from Eq. (7). Thereby we obtain a cumbersome
expression that depends on the numbers ak and the phases
φk . Next we calculate the width of the interval (αmin,αmax),
wherein the no-transition probability Q(α) remains below the
selected error threshold ε at all points of this interval,

max{Q(α)} < ε, [α ∈ (αmin,αmax)]. (10)

Of particular significance are the dynamic range ratio

r = αmax

αmin
, (11)

which determines the bandwidth of the profile, and the
minimum total pulse area

Amin =
N∑

k=1

Ak, min = αmin

N∑
k=1

ak, (12)

which corresponds to the lower bound of the high-fidelity
interval (αmin,αmax). Here Amin determines the maximum
speed of the CP inversion. For each selected number of pulses
N and each error threshold ε, we maximize numerically (by
varying the parameters ak and the phases φk) the dynamic
range r , for which the no-transition probability Q at all points
in the interval (αmin,αmax) remains below ε, while pushing the
total area to as small values as possible.

2. Ultrabroad-band composite pulse sequences

The UBB CPs derived by this method are listed in Table I
in the Appendix. We denote them by UBN (ultrabroad-band
composite sequence of N pulses) and group them in three
categories in regard to the maximum admissible error ε. The
figure of merit is the dynamic range ratio r , which naturally
increases with the number of constituent pulses N in the
CP sequence. The UB3 CPs use identical pulses (of equal
area), whereas the higher CPs involve pulses of unequal areas;
however, the area ratios are rational numbers. We note also
that for odd N the CPs are symmetric, while for even N
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FIG. 1. (Color online) Transition probabilityP (left column) and
infidelity (error) Q = 1 − P (right column) vs the total pulse area for
the UBB CPs UBN , with N = 3,5,7,9 (solid lines). The parameters
of these CPs are given in Table I (tolerated error ε = 0.01). The
dashed lines show the profiles of the ordinary BB CPs with the phases
of Eq. (13) [7]. The dotted red line in the N = 5 frames represents
the transition profile for the BB1 composite pulse of Wimperis [16].

they are asymmetric. These features have emerged from the
numerical maximization of r and they are not set beforehand.
The minimum total pulse area is very modest: It does not
exceed 4π , 4.5π , and 5π for ε = 0.01, 0.001, and 0.0001,
respectively. It is especially remarkable that with UBB CPs
of six or more pulses, a transition probability P > 0.99 is
achieved for couplings in huge ranges differing by a factor of
10 and more. Especially impressive is the staggering value of
r of 22.5 for UB9: In terms of the interaction of a two-level
atom with a quantized light field, this covers a huge range
of coupling constants (proportional to

√
n + 1) for photon

numbers from n = 0 to nearly n = 500. A range r of over 10
is achieved by the UB9 pulse even for transition probability
P > 0.999.

As a benchmark for comparison we use the BN broadband
pulses we have derived earlier [7]. They are sequences of N

identical pulses (with N odd), with phases

φk = k(k − 1)π

N
(k = 1,2, . . . ,N ). (13)
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FIG. 2. Population inversion error Q = 1 − P vs the total pulse
area for the UBB CPs UB5 for different values of the tolerated error
ε. The parameters of these UBB CPs are given in Table I.

The no-transition probability for these CPs is Q =
cos2N (A/2) [20], where A is the pulse area of each pulse.
From here we can easily calculate the dynamic range of these
CPs for each ε and each N , which is

r = π

arccos(ε1/2N )
− 1. (14)

This formula is valid for a single pulse (N = 1) as well; it gives
r = 1.14, 1.04, and 1.013 for ε = 0.01, 0.001, and 0.0001,
respectively. One can verify that the dynamic ranges of the
UBN CPs listed in Table I exceed considerably those of the
regular BN CPs. For example, for ε = 0.01 we find r = 1.89,
2.54, 3.09, 3.58, and 4.03 for B3, B5, B7, B9, and B11 CPs,
respectively; these values are far below those for the respective
UBN CPs.

Several excitation profiles are depicted in Fig. 1. For the
sake of easy comparison, the total pulse area of the sequence∑N

k=1 Ak is measured in units Amin, so the high-fidelity
window extends from 1 to r . As one can see, the UBB CPs are
much broader than the corresponding BB CPs. In order to get a
feeling for the extent of improvement of the high-fidelity range
by our UBB CPs, we have also added in the N = 5 frames
the well-known BB1 composite pulse of Wimperis [16].

Figure 2 shows the error of three inversion profiles for
UB5 CPs with different error threshold ε. Naturally, the larger
the tolerated error ε, the broader the corresponding inversion
profile.

B. Identical pulses

In some applications it may be more convenient, or only
possible, to use identical pulses, with the same pulse area. It is
still possible to construct UBB CPs of greater bandwidth than

033406-3



B. T. TOROSOV, E. S. KYOSEVA, AND N. V. VITANOV PHYSICAL REVIEW A 92, 033406 (2015)

the standard BB CPs, although of lesser bandwidth compared
to the UBB CPs with nonidentical pulses. Looking back at
Eq. (9), we see that the condition for identical pulses amounts
to setting all numbers ak = 1 (k = 1,2, . . . ,N). Then the area
parameter α is equal to the area of each constituent pulse in
the CP.

For a sequence of N identical resonant pulses of pulse area
α each but with different phases,

αφ1αφ2 · · · αφN
, (15)

the total propagator is given by Eq. (5). We use the same
numerical method for the derivation of these UBB CPs as the
one for the UBB CPs with unequal areas above. Numerical
evidence suggests that the composite phases must satisfy the
anagram condition φk = φN−k+1 (k = 1,2, . . . ,N). Moreover,
we have found that the CPs with an even number of pulses
do not outperform than the CPs with a smaller odd number of
pulses; hence we only consider here odd N .

We present the derived UBB CPs in Table II in the
Appendix. The dynamic range ratio r is a factor of 1.5–2 lower
than for the UBB CPs with nonidentical pulses in Table I. Still,
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FIG. 3. (Color online) Transition probabilityP (left column) and
infidelity (error) Q = 1 − P (right column) vs the single-pulse area
α for the UBB CPs composed of identical pulses, for N = 5,7,9,11
(solid lines). The composite phases are given in Table II and the
tolerated error is set to ε = 0.01 and 0.001. The dashed blue lines
compare the profiles of the corresponding standard BB CPs, with
phases, taken from [7].

the values of r are substantially higher than the ones for the
conventional BB CPs [cf. Eq. (14)]. Several excitation profiles
are depicted in Fig. 3. As one can see, the UBB CPs are
much broader than the conventional BB CPs but still, they are
outperformed by the UBB CPs with nonidentical pulses shown
in Fig. 1.

C. Ultrabroad-band composite sequences
for double compensation

The proposed technique can be extended to derive
ultrabroad-band composite pulses, which produce excitation
profiles robust against more than a single parameter. Here we
present composite sequences that perform double compensa-
tion of errors in the pulse area and the detuning. This is done
by numerical maximization of the area in the 2D space (�,�),
in which the transition probability remains above 1 − ε.

Table III shows such composite pulses for sequences of
three, five, seven, and nine pulses. The efficiency of these
CPs is shown in Fig. 4. For any value of the admissible error
ε, the high-fidelity area for the UBB CPs is vastly expanded
compared to the universal CPs [10] for N = 3, 7, and 9 pulses
and moderately increased for N = 5 pulses.

Our numerical maximization method allows a far greater
flexibility compared to previous methods because the high-
fidelity area can be shaped in essentially any desired manner.
We illustrate this tunability in Fig. 5, where three different five-
pulse UBB CPs are shown to produce three different profiles:
(i) a balanced profile with equal compensation of errors in �

and � (the same as in Fig. 4), (ii) an elongated detuning-biased
profile, which has an enhanced fidelity range vs �, and (iii) an
elongated area-biased profile, which has an enhanced fidelity
range vs �.
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FIG. 4. (Color online) Transition probability P vs the Rabi fre-
quency and the detuning for the UBB CPs for double-compensation
with three, five, seven, and nine pulses given in Table III. The solid
lines correspond to different values of the tolerated error ε = 0.0001,
0.001, and 0.01 (from the inside outward). The dashed lines are the
corresponding lines for the universal CPs of Ref. [10].
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FIG. 5. Transition probability P vs the Rabi frequency and the
detuning for the UBB CPs for a composite sequence of five pulses
with different optimization shapes. The tolerated error is set to
ε = 0.0001 and the corresponding CPs are given in Table III (UB5,
UB5d , and UB5a) are depicted by solid, dashed and dotted curves,
respectively.

IV. ULTRANARROW-BAND COMPOSITE PULSES

The UNB CPs are derived in a similar way to the UBB ones.
This time we force the excitation probability P to remain
below the value ε in as broad intervals on the two sides of
the central peak as possible. Numerical simulations return
sequences of identical pulses with the same pulse area but
different (nonanagram) phases. As in the previous section, we
derive the phases for N = 3, 5, 7, 9, and 11. We list these
results in Table IV, where we also show the ratio r between
the right and left borders, outside of which the error is below
the chosen threshold. A smaller r means a better NB sequence.

As a benchmark for comparison we use the NN narrowband
pulses we have derived earlier [19]. They are sequences of N

identical pulses (with N odd), with phases

φ2k = −φ2k+1 = 2kπ

N
[k = 0,1, . . . ,(N − 1)/2]. (16)

The transition probability is P = sin2N (α/2) [19], where α

is the pulse area of each pulse. From here we calculate the
dynamic range of these CPs, which is

r = π

arcsin(ε1/2N )
− 1. (17)

One can verify that the dynamic ranges of the UNN CPs listed
in Table IV outperform considerably those of the regular NB
CPs. For example, for ε = 0.01 we find r = 5.51, 3.60, 2.91,
2.55, and 2.32 for N3, N5, N7, N9, and N11 CPs, respectively;
these values are far above those for the respective UNN CPs.

The excitation profiles of these UNB CPs are plotted in
Fig. 6. Again, the superiority of the UNB CPs over the NB
CPs is obvious.

V. CONCLUSION

We have presented an approach to construct UBB CPs,
which produce much broader excitation profiles than the
traditional CPs at the expense of a finite error ε in the
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FIG. 6. (Color online) Transition probability P on an absolute
scale (left column) and on a logarithmic scale (right column) as a
function of the single-pulse area for the UNB CPs, for N = 3,5,7,9
(solid lines). The error tolerance is ε = 0.01 and 0.001 and the
composite phases are given in Table IV. The dashed lines show the
profiles of the corresponding standard NB CPs with the phases of
Eq. (16) [19].

high-probability range, that is the range of pulse areas in which
the transition probability remains above 1 − ε. As a quality
measure for these CPs we have adopted the ratio r [Eq. (11)]
between the upper and lower bounds of this range. This ratio
tells us how broad the range of couplings is for which efficient
excitation can occur simultaneously. We have constructed such
CPs for error thresholds ε = 0.01, 0.001, and 0.0001 in two
variations: with constituent pulses of different and equal pulse
areas, the former being superior in terms of bandwidth. Both
types considerably outperform the conventional single-point
broad-band CPs. For example, for error level ε = 0.01 the
dynamic range r varies from 3.6 for the conventional B9 pulse
to 8.6 for the ultrabroad-band UB9e composed of identical
pulses and 22.5 for the ultrabroad band UB9 composed of
nonidentical pulses. In another example, in order to produce
excitation above 99% for couplings differing by up to a factor
of r = 4, one needs the 11-pulse single-point B11 sequence,
while only the four-pulse UBB pulse UB4 suffices for the same
objective.
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By using the same method we have constructed also
UNB CPs, which outperform the conventional single-point
NB CPs too. It is important to note that the presented
UBB and UNB CPs can be used as building modules to
design higher CPs, by using the nesting technique, where a
larger CP is constructed by nesting shorter CPs of identical
pulses [14,16–18,20,21]. For instance, an N -pulse CP with
phases φj (j = 1,2, . . . ,N ) nested in an M-pulse CP with
phases χk (k = 1,2, . . . ,M) produces a CP of MN pulses
with phases φj + χk . Similarly, we can design nested UNB
CPs by nesting them into themselves. Also, one can create
nested ultrapassband CPs, by nesting an UBB CP into an UNB
CP or vice versa [20]. Such passband pulses may be used to
stabilize the central peak of the UNB CPs, which in theory
achieves a unit efficiency but in reality can have a lower peak
value; nested ultrapassband CPs can stabilize this peak at the
unit efficiency value.

We note also that the direct numerical simulation outper-
forms the nesting technique for a given number of constituent
pulses. However, the nesting technique allows a very simple
scaling procedure and trivial calculation of the phases, while
the direct numerical procedure is computationally very de-
manding for long CPs.

The UBB CPs presented here are of potential interest in
a variety of applications. For example, they can be used
to accelerate sideband cooling of trapped ions [11]. Several
dozen vibrational states are usually populated after Doppler
cooling of the ions. The sideband cooling is conducted by
the application of a laser field on the first red vibrational
sideband of the electronic transition frequency. Because the
red-sideband coupling depends on the number of phonons n,
e.g., ∝√

n in the Lamb-Dicke regime, only a limited range of
vibrationally dressed electronic states is efficiently excited in
a single run. The UBB CPs allow us to excite many transitions
simultaneously with nearly unit probability, e.g., the UB6
sequence of Table I can excite all sideband transitions with
n = 1–100 with probability greater than 99%.

Another application is in optical pumping of atoms,
where only a single polarized field is often used on the

transition between the ground level and an excited level
in order to prepare the atom in a well-defined magnetic
sublevel of the ground level. The transitions between the
magnetic sublevels of two levels with angular momenta J1

and J2 are proportional to the Clebsch-Gordan coefficients,
which are different for each transition. For example, in the
J ↔ J transitions the largest and smallest Clebsch-Gordan
coefficients differ by a factor of J and in the J ↔ J − 1
transitions this ratio is

√
J (2J − 1). Hence all transitions

between the magnetic sublevels in the J1 = 4 ↔ J2 = 4 and
J1 = 4 ↔ J2 = 3 systems can be inverted simultaneously with
over 99% probability by the UB4 and UB5 pulses from Table I,
respectively.

It is important that the lower bound of the total pulse area
Amin for the UBB CPs in Table I is in the range 2π − 5π ,
even for an error value of 10−4. The implication is that these
UBB CPs require less pulse area and are therefore faster than
adiabatic techniques, which typically require a pulse area of
10π and more. Moreover, these CPs deliver higher accuracy
than adiabatic techniques.
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APPENDIX: ULTRABROAD-BAND AND
ULTRANARROW-BAND COMPOSITE PULSE SEQUENCES

In this Appendix we present in Tables I–IV the specific
values of the phases for the composite pulses derived and
discussed in this paper.

TABLE I. Ultrabroad-band CPs composed of nonidentical pulses with different area, for an error value of ε = 0.01, 0.001, and 0.0001. We
denote the sequences by (A1)φ1 (A2)φ2 · · · (AN )φN

, where Ak are the individual pulse areas and φk are the relative phases. Both Ak and φk are
given in units π . Here Amin and Amax indicate the minimum and maximum total pulse areas of the high-fidelity window (Amin,Amax), wherein
Q < ε. The ratio r = Amax/Amin is a measure of the dynamic range of the CP (i.e., its bandwidth in units of the minimum area Amin). Note that
for odd N the CPs are symmetric, while for even N they are asymmetric. Note also that our numerical code returned composite sequences in
which the ratios between the individual pulse areas are rational numbers; we do not have an explanation for this fact.

CP Composite sequence Amin Amax r

ε = 0.01
UB3 (α)0,(α)0.586π ,(α)0 1.65π 4.35π 2.63
UB4 (α)0,(α)0.454π ,(α)0.967π ,(2α)0.204π 1.96π 8.04π 4.10
UB5 (α)0,(3α)0.710π ,(α)1.351π ,(3α)0.710π ,(α)0 2.40π 15.60π 6.51
UB6 (4α)0,(2α)0.853π ,(α)0.289π ,(α)0.779π ,(4α)0.108π ,(α)1.333π 2.40π 23.60π 9.81
UB7 (3α)0,(8α)0.656π ,(4α)1.249π ,(6α)0.468π ,(4α)1.249π ,(8α)0.656π ,(3α)0 2.52π 33.48π 13.27
UB8 (α)0,(8α)0.658π ,(4α)0.906π ,(16α)1.994π ,(8α)0.833π ,(4α)0.292π ,(12α)0.823π ,(9α)1.955π 3.60π 58.40π 16.22
UB9 (3α)0,(4α)0.762π ,(4α)1.163π ,(9α)0.270π ,(3α)1.568π ,(9α)0.270π ,(4α)1.163π ,(4α)0.762π ,(3α)0 3.65π 82.34π 22.54
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TABLE I. (Continued.)

CP Composite sequence Amin Amax r

ε = 0.001
UB3 (α)0,(α)0.631π ,(α)0 2.06π 3.94π 1.91
UB4 (α)0,(α)0.556π ,(α)1.071π ,(2α)0.217π 2.81π 7.19π 2.56
UB5 (α)0,(3α)0.722π ,(α)1.387π ,(3α)0.722π ,(α)0 2.75π 15.25π 5.55
UB6 (α)0,(6α)0.681π ,(2α)0.409π ,(6α)1.347π ,(6α)0.627π ,(α)0.020π 3.25π 18.75π 5.77
UB7 (α)0,(2α)0.508π ,(4α)0.010π ,(8α)0.768π ,(4α)0.010π ,(2α)0.508π ,(α)0 2.77π 19.23π 6.94
UB8 (4α)0,(2α)0.881π ,(α)0.358π ,(α)1.861π ,(4α)0.774π ,(2α)1.842π ,(2α)0.144π ,(α)1.971π 3.62π 30.38π 8.38
UB9 (3α)0,(α)0.737π ,(4α)0.093π ,(2α)1.061π ,(3α)0.823π ,(2α)1.061π ,(4α)0.093π ,(α)0.737π ,(3α)0 4.12π 41.88π 10.17

ε = 0.0001
UB3 (α)0,(α)0.651π ,(α)0 2.36π 3.64π 1.55
UB4 (α)0,(α)0.608π ,(3α)0.083π ,(2α)0.994π 4.58π 9.42π 2.06
UB5 (α)0,(3α)0.731π ,(α)1.392π ,(3α)0.731π ,(α)0 4.43π 13.57π 3.07
UB6 (α)0,(2α)0.754π ,(α)0.804π ,(α)1.470π ,(3α)0.782π ,(α)0.039π 3.29π 14.71π 4.47
UB7 (α)0,(α)0.741π ,(2α)0.437π ,(3α)1.749π ,(2α)0.437π ,(α)0.741π ,(α)0 3.40π 18.60π 5.48
UB8 (4α)0,(2α)0.914π ,(α)0.426π ,(α)1.927π ,(4α)0.816π ,(2α)1.854π ,(2α)0.116π ,(α)1.951π 4.58π 29.42π 6.42
UB9 (3α)0,(α)0.744π ,(4α)0.111π ,(2α)1.082π ,(3α)0.856π ,(2α)1.082π ,(4α)0.111π ,(α)0.744π ,(3α)0 4.83π 41.17π 8.53

TABLE II. Ultrabroad-band CPs composed of identical pulses with the same pulse area αφ1αφ2 · · · αφN
for an error value of ε = 0.01,

0.001, and 0.0001. For the sake of brevity, we list only the phases (φ1,φ2, . . . ,φN ), which are given in units π . Here αmin and αmax indicate the
minimum and maximum values of the high-fidelity window (αmin,αmax), wherein Q < ε. The ratio r = αmax/αmin is a measure of the dynamic
range of the CP (i.e., its bandwidth in units of αmin). The three-pulse sequences are the same as in Table I and are given here for completeness.
All CPs are symmetric.

CP (φ1,φ2, . . . ,φN ) αmin αmax r

ε = 0.01
UB3e (0,0.586,0)π 0.550π 1.450π 2.64
UB5e (0,0.653,0.416,0.653,0)π 0.360π 1.640π 4.55
UB7e (0,0.673,0.550,0.849,0.550,0.673,0)π 0.265π 1.735π 6.56
UB9e (0,0.167,0.848,0.525,0.450,0.525,0.848,0.167,0)π 0.208π 1.792π 8.61
UB11e (0,0.428,0.476,1.026,0.674,0.381,0.674,1.026,0.476,0.428,0)π 0.171π 1.829π 10.68

ε = 0.001
UB3e (0,0.631,0)π 0.688π 1.312π 1.91
UB5e (0,0.716,0.424,0.716,0)π 0.476π 1.525π 3.20
UB7e (0,0.607,0.815,0.207,0.815,0.607,0)π 0.357π 1.643π 4.60
UB9e (0,0.221,0.974,0.565,0.466,0.565,0.974,0.221,0)π 0.284π 1.716π 6.05
UB11e (0,0.145,0.571,1.812,1.561,1.494,1.561,1.812,0.571,0.145,0)π 0.235π 1.765π 7.52

ε = 0.0001
UB3e (0,0.651,0)π 0.786π 1.214π 1.55
UB5e (0,0.750,0.420,0.750,0)π 0.576π 1.424π 2.47
UB7e (0,0.660,0.821,0.161,0.821,0.660,0)π 0.442π 1.558π 3.53
UB9e (0,0.266,1.062,0.589,0.468,0.589,1.062,0.266,0)π 0.356π 1.644π 4.63
UB11e (0,0.802,0.719,1.213,1.034,1.338,1.034,1.213,0.719,0.802,0)π 0.296π 1.704π 5.77

TABLE III. Two-dimensional UBB CPs composed of nonidentical rectangular pulses with different pulse duration (T1)φ1 (T2)φ2 · · · (TN )φN
,

where T is measured in arbitrary time units τ and the phases are in units π . All CPs are symmetric.

CP Composite sequence

UB3 (0.415)0,(1.586)0.616,(0.415)0

UB5 (0.315)0,(0.738)0.829,(1.771)1.317,(0.738)0.829,(0.315)0

UB5d (0.321)0,(0.730)0.828,(1.728)1.320,(0.730)0.828,(0.321)0

UB5a (0.310)0,(0.736)0.819,(1.779)1.292,(0.736)0.819,(0.310)0

UB7 (0.259)0,(0.654)0.902,(0.839)1.600,(1.781)1.972,(0.839)1.600,(0.654)0.902,(0.259)0

UB9 (0.259)0,(0.662)0.933,(0.856)1.706,(0.884)0.201,(1.133)0.374,(0.884)0.201,(0.856)1.706,(0.662)0.933,(0.259)0
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TABLE IV. Ultranarrow-band composite sequences of identical pulses with the same pulse area αφ1αφ2 . . . αφN
for error values of ε = 0.01,

0.001 and 0.0001. For the sake of brevity, we list only the phases of these CPs (φ1,φ2, . . . ,φN ). αmin and αmax indicate the borders of the
no-transition windows (0,αmin) and (αmax,2π ), wherein P < ε (we have set αmax = 2π − αmin in order to make the profiles symmetric). The
ratio r = αmax/αmin is a measure of the width of the CP, and lower values of r mean a better UNB CP.

CP (φ1,φ2, . . . ,φN ) αmin αmax r

ε = 0.01
UN3 (0,0.587,1.174)π 0.450π 1.550π 3.45
UN5 (0,0.238,1.580,0.923,1.161)π 0.637π 1.363π 2.14
UN7 (0,0.124,1.820,0.502,1.183,0.879,1.003)π 0.732π 1.268π 1.73
UN9 (0,0.335,0.677,1.270,0.938,0.605,1.199,1.540,1.875)π 0.788π 1.211π 1.54
UN11 (0,0.281,0.313,1.784,0.100,0.597,1.094,1.411,0.883,0.917,1.200)π 0.827π 1.173π 1.42

ε = 0.001

UN3 (0,0.631,1.262)π 0.313π 1.687π 5.38
UN5 (0,0.295,1.575,0.856,1.151)π 0.520π 1.481π 2.85
UN7 (0,0.612,0.409,1.796,1.182,0.980,1.591)π 0.640π 1.360π 2.13
UN9 (0,0.417,0.837,1.471,1.055,0.639,1.273,1.693,0.110)π 0.713π 1.287π 1.81
UN11 (0,0.776,0.859,1.313,1.472,1.744,0,0.153,0.576,0.643,1.399)π 0.761π 1.239π 1.63

ε = 0.0001

UN3 (0,0.650,1.301)π 0.215π 1.785π 8.28
UN5 (0,0.332,1.580,0.828,1.160)π 0.422π 1.578π 3.74
UN7 (0,0.663,0.506,1.842,1.178,1.021,1.684)π 0.555π 1.445π 2.60
UN9 (0,0.478,0.959,1.610,1.132,0.654,1.306,1.786,0.265)π 0.641π 1.359π 2.12
UN11 (0,0.804,0.889,1.387,1.568,1.875,0.183,0.364,0.863,0.948,1.753)π 0.702π 1.298π 1.85
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